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Abstract: - In this work, second part of this study, the high resolution numerical schemes of Yee and Harten, of 
Yang second order, of Yang third order, and of Yang and Hsu are applied to the solution of the Euler and 
Navier-Stokes equations in three-dimensions. All schemes are flux difference splitting algorithms. The Yee and 
Harten is a TVD (“Total Variation Diminishing”) second order accurate in space and first order accurate in 
time algorithm. The Yang second order is a TVD/ENO (“Essentially Nonoscillatory”) second order accurate in 
space and first order accurate in time algorithm. The Yang third order is a TVD/ENO third order accurate in 
space and first order accurate in time algorithm. Finally, the Yang and Hsu is a UNO (Uniformly 
Nonoscillatory) third order accurate in space and first order accurate in time algorithm. The Euler and Navier-
Stokes equations, written in a conservative and integral form, are solved, according to a finite volume and 
structured formulations. A spatially variable time step procedure is employed aiming to accelerate the 
convergence of the numerical schemes to the steady state condition. It has proved excellent gains in terms of 
convergence acceleration as reported by Maciel. The physical problems of the supersonic flows along a 
compression corner and along a ramp are solved, in the inviscid case. For the viscous case, the supersonic flow 
along a ramp is again solved. In the inviscid case, an implicit formulation is employed to marching in time, 
whereas in the viscous case, a time splitting or Strang approaches are used. The results have demonstrated that 
the Yang and Hsu UNO third order accurate algorithm has presented the best solutions in the problems studied 
herein. Moreover, it is also the best as comparing with the numerical schemes of Part I of this study. 
 
Key-Words: - Yee and Harten algorithm, Yang second order TVD/ENO algorithm, Yang third order TVD/ENO 
algorithm, Yang and Hsu UNO algorithm, Euler and Navier-Stokes equations, Finite Volumes. 
 

1 Introduction 
In recent years, many high resolution shock 
capturing finite volume schemes for the 
computation of the Euler equations have been 
developed. Of special interest are the methods that 
generate nonoscillatory solutions but sharp 
approximations to shock and contact discontinuities. 
This interest stems from the fact that even with the 
advances in high-speed supercomputing, grid 
generation, automatic adaptive grid procedures, etc., 
the lack of robust and accurate numerical schemes is 
a major stumbling block for the success of 
computational fluid dynamics. Most of these 
schemes [1-9] are very different in form, 
methodology, and design principle. However, from 
the standpoint of numerical analysis, these schemes 
are total variation diminishing (TVD) for nonlinear 
scalar hyperbolic conservation laws and for constant 
coefficient hyperbolic systems. The notion of TVD 
schemes was introduced by Harten [1-2]. Some of 
these methods can also be viewed as three-point 
central difference schemes with a “smart” numerical 
dissipation or smoothing mechanism. “Smart” here 

means automatic feedback mechanism to control the 
amount of numerical dissipation for nonlinear 
problems. In general, TVD schemes can be divided 
into two categories, namely, upwind and symmetric 
TVD schemes. A way of distinguish an upwind 
from a symmetric TVD scheme is that the numerical 
dissipation term corresponding to an upwind TVD 
scheme is upwind-weighted [1-6] as opposed to the 
numerical dissipation term corresponding to a 
symmetric TVD scheme that is centered [7-9]. 
 Harten’s method of constructing high resolution 
TVD schemes involves starting with a first order 
TVD scheme and applying it to a modified flux. The 
modified flux is chosen so that the scheme is second 
order at regions of smoothness and first order at 
points of extrema. This technique is sometimes 
referred to as the modified flux approach. Although 
the scheme is an upwind scheme, it is written in a 
symmetric form; i.e., central difference plus an 
appropriate numerical dissipation term. This special 
form is especially advantageous for systems of 
higher than one space dimension. It results in less 
storage and a smaller operation count than its 
upwind form [10]. The modified flux approach is 
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relatively simple to understand and easy to 
implement into a new or existing computing code. 
One can modify a standard three-point central 
difference code by simply changing the 
conventional numerical dissipation term into the one 
designed for the TVD scheme. 
 In [11], a preliminary study was completed on 
the implicit TVD scheme for a two-dimensional 
gasdynamics problem in a Cartesian coordinate. It 
was found that further improvement in computation 
efficiency and converged rate is required for 
practical application. 
 [12] proposed a modification in the work of [11], 
written via the modified flux approach, aiming to 
extend these methods to the multidimensional 
hyperbolic conservation laws in curvilinear 
coordinates. They presented various ways of 
linearizing the implicit operator and solution 
strategies to improve the computation efficiency of 
the implicit algorithm were discussed. Numerical 
experiments with some AGARD test cases for 
steady-state airfoil calculations showed that the 
proposed linearized implicit upwind TVD schemes 
were quite robust and accurate. 
 Very recently, a new class of uniformly high-
order-accurate essentially nonoscillatory (ENO) 
schemes have been developed by [13-15]. They 
presented a hierarchy of uniformly high-order-
accurate schemes that generalize Godunov’s scheme 
[16], its second order accurate MUSCL extension [3; 
17] and the total variation diminishing (TVD) 
scheme [18] to arbitrary order of accuracy. In 
contrast to the earlier second-order TVD schemes 
which drop to first-order accuracy at local extrema 
and maintain second-order accuracy in smooth 
regions, the new ENO schemes are uniformly high-
order accurate throughout, even at critical points. 
The ENO schemes use a reconstruction algorithm 
that is derived from a new interpolation technique 
that when applied to piecewise smooth data gives 
high-order accuracy whenever the function is 
smooth but avoids a Gibbs phenomenon at 
discontinuities. An adaptive stencil of grid points is 
used; therefore, the resulting schemes are highly 
nonlinear even in the scalar case.  
 Theoretical results for the scalar coefficient case 
and numerical results for the scalar conservation law 
and for the one-dimensional Euler equations of gas 
dynamics have been reported with highly accurate 
results. Such high-order ENO schemes have the 
potential to be adapted to the current Euler/Navier-
Stokes flow solvers as one does for the second order 
TVD explicit and implicit schemes [11; 19-20] to 
further enhance the accuracy of flowfield simulation. 
Implementation can be either as a higher-order flow 

solver as in the present work or as a postprocessor to 
enhance the resolution. 
 [21] formally extended his second-order TVD 
schemes described in [22-23] to uniformly second-
order ENO schemes for the two-dimensional Euler 
equations in curvilinear coordinate systems. Both 
explicit and implicit schemes were described. The 
authors emphasized in this work that TVD schemes 
are a special case of ENO schemes in which the 
TVD requirement is replaced by a less restricted 
essentially nonoscillatory condition, a concept 
advanced by Harten and co-workers [13-15]. 
Numerical experiments with the ENO scheme for an 
one-dimensional blast wave diffraction around a 
cylinder, shock wave collision over a circular arc, 
and steady transonic flow over a circular arc in a 
channel were reported. 
 [24] described a class of third-order, essentially 
nonoscillatory shock-capturing schemes for the 
Euler equations of gas dynamics. These schemes 
were obtained by applying the characteristic flux-
difference splitting to an appropriately modified flux 
vector that could have high-order accuracy and 
nonoscillatory property. Third-order schemes were 
constructed using upstream interpolation and ENO 
interpolation. Both explicit and implicit schemes 
were derived. Implicit schemes to two-dimensional 
Euler equations in general coordinates were also 
given. The author applied the resulting schemes to 
simulate one-dimensional and two-dimensional 
unsteady shock tube flows and steady two-
dimensional flows involving strong shocks to 
illustrate the performance of the schemes. 
 [25], following the works of [13-15], described a 
class of third-order (at least one-dimensional scalar 
case) shock capturing UNO schemes for the Euler 
equations of gas dynamics. Third-order schemes 
were constructing using UNO interpolation. The 
development was identical to those given in [24], 
except that Roe’s approximate Riemann solver [26] 
was employed instead of the characteristic flux 
difference splitting method. The main difference 
between the approach used in [24] and in this work 
was that the former one operated on the difference 
of flux vector, whereas in this work operated on the 
difference of conservative state vector. It is known 
that the conservative vector is not continuous across 
the shock whereas the flux is continuous; that is, the 
flux vector function is one order smoother than the 
conservative state vector function. The Roe’s 
averages [26] enable the Rankine-Hugoniot 
relations to be satisfied across the shock. Also, the 
Roe’s linearization technique for nonlinear system 
permits the use of completely different characteristic 
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fields and is one of the most popular approximate 
Riemann solvers currently in use. 
 Traditionally, implicit numerical methods have 
been praised for their improved stability and 
condemned for their large arithmetic operation 
counts ([27]). On the one hand, the slow 
convergence rate of explicit methods become they 
so unattractive to the solution of steady state 
problems due to the large number of iterations 
required to convergence, in spite of the reduced 
number of operation counts per time step in 
comparison with their implicit counterparts. Such 
problem is resulting from the limited stability region 
which such methods are subjected (the Courant 
condition). On the other hand, implicit schemes 
guarantee a larger stability region, which allows the 
use of CFL (Currant-Friedrichs-Lewis) numbers 
above 1.0, and fast convergence to steady state 
conditions. Undoubtedly, the most significant 
efficiency achievement for multidimensional 
implicit methods was the introduction of the 
Alternating Direction Implicit (ADI) algorithms by 
[28-30], and fractional step algorithms by [31]. ADI 
approximate factorization methods consist in 
approximating the Left Hand Side (LHS) of the 
numerical scheme by the product of one-
dimensional parcels, each one associated with a 
different spatial coordinate direction, which retract 
nearly the original implicit operator. These methods 
have been largely applied in the CFD 
(“Computational Fluid Dynamics”) community and, 
despite the fact of the error of the approximate 
factorization, it allows the use of large time steps, 
which results in significant gains in terms of 
convergence rate in relation to explicit methods. 
 In the present work, second part of this study, the 
[12] TVD, the [21] TVD/ENO, the [24] TVD/ENO, 
and the [25] UNO schemes are implemented, on a 
finite volume context and using a structured spatial 
discretization, to solve the Euler and Navier-Stokes 
equations in the three-dimensional space. All 
schemes are high resolution flux difference splitting 
ones, based on the concept of Harten’s modified 
flux function. The [12] is a TVD second order 
accurate in space and first order accurate in time 
algorithm. [21] is a TVD/ENO second order 
accurate in space and first order accurate in time 
algorithm. The [24] is a TVD/ENO third order 
accurate in space and first order accurate in time 
algorithm. Finally, the [25] is a UNO (Uniformly 
Nonoscillatory) third order accurate in space and 
first order accurate in time algorithm. An implicit 
formulation is employed to solve the Euler 
equations, whereas a time splitting or Strang 
methods, explicit methods, are used to solve the 

Navier-Stokes equations. A Linearized 
Nonconservative Implicit LNI form or an 
approximate factorization ADI method is employed 
by the schemes. The algorithms are accelerated to 
the steady state solution using a spatially variable 
time step, which has demonstrated effective gains in 
terms of convergence rate ([32-33]). All schemes 
are applied to the solution of physical problems of 
the supersonic flows along a compression corner 
and along a ramp, in the inviscid case. For the 
viscous case, the supersonic flow along a ramp is 
again solved. The results have demonstrated that the 
[25] UNO algorithm, third order accurate in space, 
has presented the best solutions, in this study. 
 

2 Navier-Stokes Equations 
As the Euler equations can be obtained from the 
Navier-Stokes ones by disregarding the viscous 
vectors, only the formulation to the latter will be 
presented. The Navier-Stokes equations in integral 
conservative form, employing a finite volume 
formulation and using a structured spatial 
discretization, to three-dimensional simulations, are 
written as: 

                      01  V dVPVtQ


,                 (1) 

where V is the cell volume, which corresponds to an 
hexahedron in the three-dimensional space; Q is the 
vector of conserved variables; and 

     kGGjFFiEEP veveve


  represents 

the complete flux vector in Cartesian coordinates, 
with the subscript “e” related to the inviscid 
contributions or the Euler contributions and “v” is 
related to the viscous contributions. These 
components of the complete flux vector, as well the 
vector of conserved variables, are defined as: 
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In these equations, the components of the viscous 
stress tensor are defined as: 

       zwyvxuxu MMxx  322 ;    (4) 

                         xvyuMxy  ;                     (5) 

                         zuxwMxz  ;                    (6) 

   zwyvxuyv MMyy  322 ;    (7) 

                         ywzvMyz  ;                    (8) 

   zwyvxuzw MMzz  322 .    (9) 

The components of the conductive heat flux vector 
are defined as follows: 

                       xedPrq iMx  ;             (10) 

                       yedPrq iMy  ;             (11) 

                       zedq iMz  Pr .             (12) 

The quantities that appear above are described as 
follows:  is the fluid density, u v and w are the 
Cartesian components of the flow velocity vector in 
the x, y and z directions, respectively; e is the total 
energy per unit volume of the fluid; p is the fluid 
static pressure; ei is the fluid internal energy, 
defined as: 

                   2225.0 wvueei  ;            (13) 

the ’s represent the components of the viscous 
stress tensor; Prd is the laminar Prandtl number, 
which assumed a value of 0.72 in the present 
simulations; the q’s represent the components of the 
conductive heat flux; M is the fluid molecular 
viscosity;  is the ratio of specific heats at constant 
pressure and volume, respectively, which assumed a 
value 1.4 to the atmospheric air; and Re is the 
Reynolds number of the viscous simulation, defined 
by: 

                              MREF lu Re ,                    (14) 

where uREF is a characteristic flow velocity and l is a 
configuration characteristic length. The molecular 
viscosity is estimated by the empiric Sutherland 
formula: 

                       TSbTM  121 ,                 (15) 

where T is the absolute temperature (K), b = 
1.458x10-6 Kg/(m.s.K1/2) and S = 110.4 K, to the 
atmospheric air in the standard atmospheric 
conditions ([34]). The Navier-Stokes equations were 
dimensionless in relation to the freestream density, 
, and the freestream speed of sound, a, for the all 
problems. For the viscous ramp problem it is also 
considered the freestream molecular viscosity, . 
To allow the solution of the matrix system of five 
equations to five unknowns described by Eq. (1), it 
is employed the state equation of perfect gases 
presented below: 

             )(5.0)1( 222 wvuep  .        (16) 

The total enthalpy is determined by: 

                                 peH .                         (17) 
 

3 Yee and Harten TVD Second Order 
Algorithm 
The [12] TVD algorithm, second order accurate in 
space, is specified by the determination of the 
numerical flux vector at the (i+½,j,k) interface. The 
extension of this numerical flux to the (i,j+½,k) and 
(i,j,k+½) interfaces is straightforward, without any 
additional complications. 
 The right and left cell volumes, as well the 
interface volume, necessary to coordinate change, 
following the finite volume formulation, which is 
equivalent to a generalized coordinate system, are 
defined as: 
 

  kjiR VV ,,1 , kjiL VV ,,  and  LR VVV  5.0int , (18) 

 
where “R” and “L” represent right and left, 
respectively. The cell volume, the computational 
cell and its interface surfaces are defined in [35-36]. 
 The area components at interface are defined by: 

SnS xx int_ , SnS yy int_ , and SnS zz int_  where 

nx, ny and nz are normal unity vector components. 
Expressions to these components and to the flux 
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area, S, are given in [35-36]. The metric terms to 
this generalized coordinate system are defined as: 
 

intint_ VSh xx  , intint_ VSh yy  , intint_ VSh zz  ; 

                                 intVShn  .                          (19) 

 
 The calculated properties at the flux interface are 
obtained by arithmetical average or by Roe’s 
average. The Roe’s average was used in this work: 
 

RLint ,    LRLRRL uuu  1int ,  (20) 

         
   LRLRRL vvv  1int ;           (21) 

           
   LRLRRL www  1int ;            (22) 

    
   LRLRRL HHH  1int ;     (23) 

         2
int

2
int

2
intintint 5.01 wvuHa  .    (24) 

  
 The eigenvalues of the Euler equations, in the  
direction, to the convective flux are given by: 
 
  zyxcont hwhvhuU intintint  , ncont haU int1  , (25) 

  contU 432    and   ncont haU int5  . (26) 
  
 The jumps in the conserved variables, necessary 
to the construction of the [12] TVD dissipation 
function, are given by: 
 

 LR eeVe  int ,  LRV  int ,       LR uuVu  int ;  (27) 

        LR vvVv  int       LR wwVw  int .  (28) 
 
 The  vectors to the (i+½,j,k) interface are 
calculated by the following expression: 
 

                   kjikjikji QR ,,2/1
1

,,2/1,,2/1 

  ,        (29) 

 

with   1
,,2/1


 kjiR  being defined in [35-36] and Q 

being the jump of conserved variables. The [12] 
TVD dissipation function is constructed using the 
right eigenvector matrix of the Jacobian matrix in 
the normal direction to the flux face. This matrix is 
defined in [35-36]. 
 The numerical flux function or modified function 
of [1], g, responsible to the second order accuracy of 
the [12] scheme, is defined as: 
 

  
  l

kji
l

kji
l

kji SMINMAXSg ,,2/1,,2/1,, ,,0      (30) 

 
with: 
 

                              
 l

kjisignS ,,2/1 .                  (31) 

 
 The entropy function to avoid non-physical 
solutions, is defined as: 
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with  = 0.2, as recommended by [11]. 
 The numerical information propagation velocity, 
, responsible to transport the numerical 
information to the algorithm, is determined by: 
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(33) 
 
 The  dissipation function to form the numerical 
dissipation operator is written as 
 

     l
kji

l
kji

l
kji

l
kji

l
kji

l
kji

l
kji gg ,,2/1,,2/1,,2/1,,1,,,,2/1,,2/1 2

1
  . 

(34) 
 
In Equations (30-34), “l” varies from 1 to 5 (three-
dimensional space), in all definitions. 
 Finally, the [12] TVD dissipation function is 
constructed by the following matrix-vector product: 
 

                
      kjikjikjiYH RD ,,2/1,,2/1,,2/1   ,           (35) 

 
with   kjiR ,,2/1  defined in [35-36]. 

 The complete numerical flux vector to the 
(i+½,j,k) interface is described by: 
 

  )(
int

)(
int

)(
int

)(
int

)(
,,2/1 5.0 l

YHz
l

y
l

x
ll

kji DVhGhFhEF  , (36) 

 
with: 
 

                   int
)()()()(

int 5.0 l
ve

l
L

l
R

l EEEE  ;               (37) 

                   int
)()()()(

int 5.0 l
ve

l
L

l
R

l FFFF  ;              (38) 

                   int
)()()()(

int 5.0 l
ve

l
L

l
R

l GGGG  .              (39) 

 
The viscous vectors at the flux interface are 
obtained by arithmetical average between the 
primitive variables at the left and at the right states 
of the flux interface, as also arithmetical average of 
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the primitive variable gradients also considering the 
left and the right states of the flux interface. 
 The right-hand-side (RHS) of the [12] TVD 
scheme, necessaries to the resolution of the implicit 
version of this algorithm, is determined by: 
 

    
YH

kji
YH

kjikjikji
n

kji FFVtYHRHS ,,2/1,,2/1,,,,,,  

    
nYH

kji
YH

kji
YH

kji
YH

kji FFFF 2/1,,2/1,,,2/1,,2/1,   .  (40)
 

 
 The time integration to the viscous simulations 
follows the time splitting method, first order 
accurate, which divides the integration in three steps, 
each one associated with a specific spatial direction. 
In the initial step, it is possible to write for the  
direction: 

 

 n
kji

n
kjikjikjikji FFVtQ ,,2/1,,2/1,,,,

*
,,   ; 

                      *
,,,,

*
,, kji

n
kjikji QQQ  ;                 (41) 

 
at the intermediate step,  direction: 
 

 *
,2/1,

*
,2/1,,,,,

**
,, kjikjikjikjikji FFVtQ   ; 

                      **
,,

*
,,

**
,, kjikjikji QQQ  ;                 (42) 

 
and at the end step,  direction: 

 

 **
2/1,,

**
2/1,,,,,,

1
,, 
  kjikjikjikji

n
kji FFVtQ ; 

                     1
,,

**
,,

1
,,

  n
kjikji

n
kji QQQ .             (43) 

 

 

4 Yang TVD/ENO Second Order 
Algorithm 
A typical conservative numerical scheme, using a 
finite volume formulation, for solving Eq. (1) can be 
expressed in terms of numerical fluxes as follows: 
 

 N
kji

N
kji

kji

kjin
kji

n
kji EE

V

t
QQ ,,2/1,,2/1

,,

,,
,,

1
,, 
 




 

   N
kji

N
kji

kji

kjiN
kji

N
kji

kji

kji GG
V

t
FF

V

t
2/1,,2/1,,

,,

,,
,2/1,,2/1,

,,

,,
 





 , 

(44) 
 

where N
kjiE ,,2/1 , N

kjiF ,2/1,   and N
kjiG 2/1,,   

are the 

numerical fluxes. For a first order upwind scheme, 
N

kjiE ,,2/1  is given by: 

 

  n
kjikjikji

n
kji

N
kji EAEE ,,,,2/1,,2/1,,2/1,,2/1

ˆ



  ,  (45) 

 

with:     kjikjikji ,,,,1,,2/1   , n
kjiE ,,2/1  and 

n
kjiE ,, defined by: 

 

         

n

kjicont

zcont

ycont

xcont

cont

n
kji

Upe

phwU

phvU

phuU

U

VE

,,2/1

int,,2/1

)(





































        

and 

            

n

kjicont

zcont

ycont

xcont

cont

n
kji

Upe

phwU

phvU

phuU

U

VE

,,

int,,

)( 
































              (46) 

 

and 
 kjiA ,,2/1

ˆ  defined as follows: 

 

                
kjikji RRA

,,2/1

1
,,2/1

ˆˆ









  ,             (47a) 

 
  ldiag ˆˆ   and      ll sign15.0ˆ ,  (47b) 

 
where:  diag  represents a diagonal matrix, as 
for instance: 
 

                














































5

4

3

2

1

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ ;             (48) 

 
 l  are defined by Eqs. (25-26) to the  direction; 

  lsign  is equal to 1.0 if  l   0.0 and -1.0 
otherwise. 
 
4.1 Uniformly second order essentially non-
oscillatory scheme 

[1] proposed to construct second order accurate 
TVD schemes by applying a first order approximate 
Riemann solver to a modified flux. Following [1], 
[21] proposed to define a modified numerical flux 
function with the definition of the modified fluxes: 
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nnMn EEEE  ; 
nnMn FFFF  ; 

                        nnMn GGGG  ,                 (49) 
 
where EM, FM and GM are the modified fluxes which 
have essentially non-oscillatory property yet to be 
defined. In the following, a numerical method of 
uniformly second order accuracy in time and space 
which combines both characteristic and conversion 
features of Eq. (1) is discussed. 
 For the present ENO scheme, the numerical flux 
EN is described by: 
 

     

 

M
kjikji

M
kji

N
kji EAEE

kji ,,,,2/1,,1,,2/1 ,,2/1

ˆ  

                    M
kjikji

M
kji EAE

kji ,,,,2/1,, ,,2/1

ˆ



 


.      (50) 

 
The components of the additional vector E  are 
given by: 
 
        ,~,~~

,,2/1,,2/1,,2/1,, kjikjikjikji eememe    

       kjikjikji eeme ,,2/1,,2/1,,2/1
~,~~
  ,       (51) 

 
where: 
 

  kjikji ,,1,, )()(   , kjikji ,,,,1 )()(   ;  (52)  

 
and kjie ,,2/1

~
  are components of the following 

column vector: 
 

  kjikjikjikji AtIAsignE ,,2/1,,,,2/1,,2/1
~

 
 

                          2,,,,2/1 kjikji E .                     (53) 

 
The  Asign  and A  in Eq. (53) are given by: 

 

     1



  RsigndiagRAsign l ; 

                           1



  RdiagRA l .                  (54) 

 
Similar derivations can be given for the F and G  
vectors in the  and  directions. In Equation (51), 
m is the minmod function: 

 
     





 


otherwise

sbsignasignifbas
bam

0.0

,min
),( ;  (55) 

  
and the m  function is defined by: 
 

                       











baifb

baifa
m .                   (56) 

 
 For  = 0.0, one has a second order TVD scheme. 
For  = 0.5, one has a uniformly second order non-
oscillatory scheme. The original numerical scheme 
of [21] is thus formed by Eq. (44) using the 
definition (50) to the numerical flux function.  
 The present author introduced some 
modifications in the [21] scheme in this work. 
Equation (50) is redefined as: 
 

 

 

M
kjikji

M
kji

N
kji QAEE

kji ,,,,2/1,,1,,2/1 ,,2/1
 

               M
kjikji

M
kji QAE

kji ,,,,2/1,, ,,2/1 

 


,            (57) 

 
with: 
 

                n
kji

nn
kji

M
kji EAEE

kji ,,1,,1,,1 ,,   ;          (58) 

                 n
kji

kji

M
kji E

e

w

v

u

VQ ,,

,,

int,, 
































 .             (59) 

 

The positive splitting matrix 
  kji

A
,,2/1

 is defined as 

 

                    1
,,2/1








 


RdiagRA lkji

,                (60) 

 

with: 
 

                           lll 5.0 ,                      (61) 

 

and the Jacobian matrix at the  direction is 
described by 
 

                      1
,





  RdiagRA l

n
ji

.                    (62) 

 

 The vector kjiE ,,2/1
~

  is also redefined as: 
 

  kjikjikjikji AtIAsignE ,,2/1,,,,2/1,,2/1
~

 
 

                         2,,,,2/1 kjikji Q ,                     (63) 

where: 
 

            T
kjikji ewvuVQ ,,int,,  .       (64) 

 
Observe that the resulting scheme is equivalent to 
the original of [21], with the unique difference that 
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the difference of fluxes in Eq. (53) is changed by the 
difference of conserved variables. With this new 
definition, the solutions present better behaviour, 
free of oscillations, undershoots and overshoots. The 
other expressions maintain the same structure. 
 The right-hand-side of the [21] scheme, 
necessaries to the resolution of the implicit version 
of this algorithm, is defined by: 
 

 N
kji

N
kji

kji

kjin
kji EE

V

t
YRHS ,,2/1,,2/1

,,

,,
,,)(  




 

 N
kji

N
kji

kji

kji FF
V

t
,2/1,,2/1,

,,

,,
 


  N

kji
N

kji
kji

kji
GG

V

t
2/1,,2/1,,

,,

,,
 


 . 

(65) 
 
The viscous formulation obeys the same procedure 
described in section 3. For explicit methods in three-
dimensions, the Strang-type directional splitting [37] 
was employed 
            

            n
kji

n
kji QtLtLtLtLtLtLQ ,,
2
,,  


(66) 
 
The L operator is defined by 
 

   N
kji

N
kjikji

n
kji

n
kji EEtQQtL ,,2/1,,2/1,,,,,,   . 

(67) 
 

Similar expressions can be given for N
kjiF ,2/1,   and 

the L operator and for N
kjiG 2/1,,   and L. 

 
 

5 Yang TVD/ENO Third Order 
Algorithm 
 
5.1 TVD formulation 

In [38], second- and third-order upwind schemes 
have been described by one-dimensional cases. It 
was found that such high-order schemes can be 
constructed by using a more accurate flux 
representation (in the discrete sense) at each nodal 
point. [24] has taken such an approach following 
Harten’s work [18] in which he applied a three-point 
first-order upwind scheme to a modified flux to 
yield second-order TVD scheme. Therefore, [24] 
calls it the modified flux approach. 
 [24] has considered a high-order extension of the 
Euler equations in one-dimensional case. The 
extension to the three-dimensional case is as follows: 
 

         












 

y

QF
BB

x

QE
ÂÂ

t

Q MM
ˆˆ   (68a) 

                         
0ˆˆ 




 

z

QG
CC

M

.            (68b) 

 

Here, M
kjiE ,, , M

kjiF ,,  and M
kjiG ,,  are called the 

modified flux vectors at nodal point (i,j,k) and is 
consisted of the original flux vectors kjiE ,, , kjiF ,,  

and kjiG ,,  and additional terms of high-order 

accuracy that usually have some nonlinear control 
terms to avoid oscillatory solutions. 
 In terms of numerical flux vector, a conservative 
scheme for Eq. (68) could be Eq. (44), with the 
numerical flux, in the  direction, defined as: 
 

 



M
kjikji

M
kji

N
kji EAEE ,,,,2/1,,1,,2/1

ˆ  

                      M
kjikji

M
kji EAE ,,,,2/1,,

ˆ



  .              (69) 

 
A third-order scheme for Eq. (44) can be 

expressed in terms of numerical flux of the form Eq. 
(69) with 
 

                   n
kji

n
kji

TVD
kji

M
kji DEEE ,,,,

3
,,,,  .         (70) 

 
 The components of Di,j,k are given by 
 

  

      l
kji

l
kji

l
kji

l
kji

l
kji dSdSd ,,2/1,,,,2/1,,,, 1

~
1   ,   

(71) 
 

where l
kjid ,,2/1

~
  and l

kjid ,,2/1  are components of 

kjiD ,,2/1
~

  and kjiD ,,2/1  given, respectively, by 

 



  

2

,,2/1
2

,,,,2/1,,2/1
~

kjikjikjikji AtsignAD  

               623 ,,,,2/1,, kjikjikji EIAt    ;       (72) 

  





  

2

,,2/1
2

,,,,2/1,,2/1 kjikjikjikji AtIsignAD
   

, 

6,, kjiE                        (73) 

 

and  l
kjiS ,,  is the smoothness monitor given by 

[39] as 
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 
























otherwise
qq

qq

qqif

S

l
kji

l
kji

l
kji

l
kji

l
kji

l
kji

l
kji

,

0,0

,,,,

,,,,

,,,,

,, ;  (74) 

 

where l
kjiq ,,  are components of the conservative 

state vector Qi,j,k; and the ’s defined as follows to 
the  direction: 
 

    
    kjikji ,,,,1    and     kjikji ,,1,,   .  (75) 

 
 The present author of this work introduces some 
modifications in the original scheme of [24]. These 
modifications are as follows: 
 

              M
kji

M
kji

N
kji QAEE

kji ,,,,1,,2/1 ,,2/1  


,       (76) 

 
where: 
 

                    n
kji

M
kji D

e

w

v

u

VQ ,,int,, 
































 ;                   (77) 

                 n
kji

nn
kji

M
kji DAEE

kji ,,,,,, ,, ;                   (78) 



  

2

,,2/1
2

,,,,2/1,,2/1
~

kjikjikjikji AtsignAD  

                623 ,,,,2/1,, kjikjikji QIAt   ;       (79) 






  

2

,,2/1
2

,,,,2/1,,2/1 kjikjikjikji AtIsignAD
 

                                6,, kjiQ .                       (80) 

 
Observe that the resulting scheme is equivalent to 
the original of [24], with the unique difference that 
the difference of fluxes in Eqs. (72-73) is changed 
by the difference of conserved variables. With this 
new definition, the solutions present better 
behaviour, free of oscillations, undershoots and 
overshoots. The other expressions maintain the 
same structure. 
 The same equations, considered in  and  
directions, can be developed, without any additional 
complexity. The algorithm described above is 
referred by [24] as TVD3 and the present authors 
remain this nomenclature. 
 The definition of the RHS to the implicit 
formulation is done as follows: 
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TVD
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kji GG
V

t
FF

V

t
 





. 

(81) 
 
The Strang method is applied to the viscous 
simulations. 
 
5.2 ENO formulation 

A third-order ENO scheme for Eq. (68) can be 
constructed using reconstruction by primitive 
variable. Here, it is adopted: 
 

n
kji

n
kji

n
kji

ENO
kji

M
kji DTEEE ,,,,,,

3
,,,,  ; 

n
kji

n
kji

n
kji

ENO
kji

M
kji DUFFF ,,,,,,

3
,,,,  ; 

           n
kji

n
kji

n
kji

ENO
kji

M
kji DVGGG ,,,,,,

3
,,,,  ,    (82) 

 
and T, U, V and D are the terms that make up for the 
higher order accuracy that also depends either the 
TVD or the ENO property to avoid Gibbs 
phenomena. 
 In Eq. (82) the components of the column vector 
Ti,j,k are given by 
 

                      l
kji

l
kji

l
kji ttmt ,,2/1,,2/1,,

~,~
 ,            (83) 

 

where l
kjit ,,2/1

~
  is given by 

 
  2

~
,,,,2/1,,,,2/1,,2/1 kjikjikjikjikji EAtIsignAT   .

 
(84) 

 
And the components of column vector kjiD ,,  are 

given by 
 

  l
kji

l
kji

l
kji

l
kji

l
kji qqifddmd ,,2/1,,2/1,,2/1,,2/1,,

~
,

~
  ; 

 
or, 
 

  l
kji

l
kji

l
kji

l
kji

l
kji qqifddmd ,,2/1,,2/1,,2/1,,2/1,,

ˆ,ˆ
  , 

(85) 
 

where l
kjid ,,2/1

~
  and l

kjid ,,2/1
ˆ
  are components of 

kjiD ,,2/1
~

  and kjiD ,,2/1
ˆ
 , respectively. 

 kjiD ,,2/1
~

  is given by Eq. (72) and kjiD ,,2/1
ˆ
  is 

given by 
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6ˆ
,,

2

,,2/1
2

,,,,2/1,,2/1 kjikjikjikjikji EIAtsignAD  




  . 

(86) 
 
 This author also introduces a modification in the 
original algorithm of [24] in its ENO3 (ENO third-
order) version. This modification is the same as that 
applied to the TVD3 scheme. Hence, 
 

n
kji

n
kji

n
kji

ENO
kji

M
kji DATAEEE

kjikji ,,,,,,
3

,,,, ,,2/1,,2/1    ; 

 n
kji

n
kji

n
kji

ENO
kji

M
kji DBUBFFF

kjikji ,,,,,,
3

,,,, ,2/1,,2/1,    ; 

n
kji

n
kji

n
kji

ENO
kji

M
kji DCVCGGG

kjikji ,,,,,,
3

,,,, 2/1,,2/1,,    ;   

(87) 
 

  2
~

,,,,2/1,,,,2/1,,2/1 kjikjikjikjikji QAtIsignAT   ; 

6ˆ
,,

2

,,2/1
2

,,,,2/1,,2/1 kjikjikjikjikji QIAtsignAD  




   

 (88) 
 

and kjiD ,,2/1
~

  defined as in Eq. (79). The other 

equations maintain the same aspect. The extension 
to the  and  directions is straightforward. 
 The definition of the RHS to the implicit 
formulation is done as follows: 
 

 


 
3

,,2/1
3

,,2/1
,,

,,
,,)( ENO

kji
ENO

kji
kji

kjin
kji EE

V

t
YRHS

 

   3
2/1,,

3
2/1,,

,,

,,3
,2/1,

3
,2/1,

,,

,, ENO
kji

ENO
kji

kji

kjiENO
kji

ENO
kji

kji

kji GG
V

t
FF

V

t
 





. 

(89) 
 
The Strang method is applied to the viscous 
simulations. 
 
 

6 Yang and Hsu UNO Third Order 
Algorithm 

Unlike TVD schemes, nonoscillatory algorithms are 
not required to damp the values of each local 
extremum at every single time step, but are allowed 
to occasionally accentuate a local extremum. The 
design involves an essentially nonoscillatory 
piecewise polynomial reconstruction of the solution 
from its cell averages, time evolution through an 
approximate solution of the resulting initial value 
problem, and averaging of this approximate solution 
over each cell. 
 A third-order UNO scheme for Eq. (1), based on 
[25] work, can be expressed by the following 
numerical flux, in  direction, for instance: 

 

 3
,,2/1

,
,,2/1,,1,,

3
,,2/1 2

1 UNO
kji

n
kji

n
kji

n
kji

UNO
kji REEE 


  . 

(90) 
 

The components of 3
,,2/1

UNO
kji  are defined as: 

 

  l
kji

l
kji

l
kji

UNOl
kji ,,1,,,,2/1

3,
,,2/1    

    

    



























otherwise

if

l
kji

l
kji

l
kji

l
kji

l
kji

l
kji

n
kji

l
kji

l
kji

l
kji

l
kji

l
kji

l
kji

l
kji

l
kji

n
kji

,,2/1,,2/1,,2/1,,2/1,,1,,,,2/1

,,2/1,,2/1

,,2/1,,2/1,,2/1,,2/1,,1,,,,2/1

ˆˆˆˆ

~~~~

 , 

(91) 
 
where the , ~  and ̂  functions are given by: 
 

                          2
,,2

1
ztz kji ;                     (92) 

                



  32

,,
2

,,32
6

1~ ztztz kjikji ;           (93) 

                          



  zzt kji

32
,,6

1
ˆ ,                    (94) 

 
and 
 

                  l
kji

l
kji

l
kji m ,,2/1,,2/1,, ,   ;          (95) 

  l
kji

l
kji

l
kji

l
kji

l
kji ifm ,,2/1,,2/1,,2/1,,2/1,, ,

~
  ; 

(96) 

  l
kji

l
kji

l
kji

l
kji

l
kji ifm ,,2/1,,2/1,,2/1,,2/1,, ,ˆ

  ; 

(97) 

   




 

 


otherwise

if l
kji

l
kji

l
kji

l
kjil

kji
l

kji
,0

0,,2/1,,2/1,,,,1
,,2/1,,2/1 ; 

(98) 

   




 

 


otherwise

if l
kji

l
kji

l
kji

l
kjil

kji
l

kji
,0

0
~~

~~ ,,2/1,,2/1,,,,1
,,2/1,,2/1 ; 

(99) 

   




 

 


otherwise

if l
kji

l
kji

l
kji

l
kjil

kji
l

kji
,0

0ˆˆ
ˆˆ ,,2/1,,2/1,,,,1

,,2/1,,2/1 . 

(100) 
 
 The same expressions can be extended to the  
and  directions in a straightforward way. To the 
inviscid implicit cases, the LNI form is applied. The 
RHS for this algorithm is given by: 
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t
YHRHS  
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   3
2/1,,

3
2/1,,

,,

,,3
,2/1,

3
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,,

,, UNO
kji

UNO
kji

kji

kjiUNO
kji

UNO
kji

kji

kji
GG

V

t
FF

V

t
 





 . 

(101) 
 
To the explicit viscous case, the Strang method is 
applied: 
 

            n
kji

n
kji QtLtLtLtLtLtLQ ,,
2
,,  
 . 

(102) 
 
The L operator is defined by 
 
     UNO

kji
UNO

kji
n

kji
n

kji EEtQQtL ,,2/1,,2/1,,,,   .  (103) 

 
 

7 Implicit Formulation 

7.1 Implicit Scheme to the TVD algorithm of 
[12] and the UNO algorithm of [25] 

In the flux difference splitting cases of [12; 25] 
algorithms, a Linearized Nonconservative Implicit 
form is applied which, although the resulting 
schemes lose the conservative property, they 
preserve their unconditional TVD properties. 
Moreover, the LNI form is mainly useful to steady 
state problems where the conservative property is 
recovery by these schemes in such condition. This 
LNI form was proposed by [11]. 
 The LNI form is defined by the following three 
step algorithm: 
 
   







*
,,,,2/1,,2/1,,,,2/1,,2/1,, kjikjikjikjikjikjikji QJtJtI

 n kjiRHS ,, , in the  direction;                              (104) 

   






**
,,,2/1,,2/1,,,,2/1,,2/1,,, kjikjikjikjikjikjikji QKtKtI

*
,, kjiQ , in the  direction;                                  (105) 

   








1
,,2/1,,2/1,,,,2/1,,2/1,,,,

n
kjikjikjikjikjikjikji QLtLtI

**
,, kjiQ , in the  direction;                                   (105) 

 

                       1
,,,,

1
,,

  n
kji

n
kji

n
kji QQQ ,               (106) 

 
where RHS is defined by Eq. (40), if the [12] 
scheme is being solved, and by Eq. (101), if the [25] 
scheme is being solved. The difference operators are 
defined as: 
 

   
      kjikjikji ,,,,1,,2/1   ,       kjikjikji ,,1,,,,2/1   ; 

(107) 

   
      kjikjikji ,,,1,,2/1,   ,       kjikjikji ,1,,,,2/1,   ; 

(108) 

   
      kjikjikji ,,1,,2/1,,   ,       1,,,,2/1,,   kjikjikji ; 

(109) 
As aforementioned, this three-diagonal linear 
system, composed of a 5x5 block matrices, is solved 
using LU decomposition and the Thomas algorithm, 
defined by a block matrix system. 
 The separated matrices J+, J-, K+, K-, L+ and L- 

are defined as follows: 
 

  
  1





  RDdiagRJ ,   1





  RDdiagRJ
  

(110) 

 
  1





  RDdiagRK ,   1





  RDdiagRK (111) 

  
  1





  RDdiagRL ,   1





  RDdiagRL . (112) 

 
 The diagonal matrices of the [12; 25] schemes 
are determined by: 
 

 

















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


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D

D

Ddiag  and 
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




































,
5

,
4

,
3

,
2

,
1

D

D

D

D

D

Ddiag

 
(113) 

 
with the D terms expressed as 

 

    llllD 

  5.0 , 

    llllD 

  5.0 , 

                   llllD 

  5.0 ,     (114) 

where: 
  defined by Eq. (32); 

 

l
 , l

  and l
  are the eigenvalues of the Euler 

equations, determined by Eqs. (25-26), in each 
coordinate direction;  

         
 














 






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0.0,0.0

0.0,
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,,2/1,,2/1,,
'

,,1
'

,,2/1

kji
l

kji
l

kji
ll

kji

l

kji
kji

l

if

ifgg
; 

(115) 
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l

kji
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kji
ll

kji
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kji
kji

l

if

ifgg
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(116)

          
 














 








0.0,0.0

0.0,

2/1,,

2/1,,2/1,,,,
'

1,,
'

,2/1,

kji
l

kji
l

kji
ll

kji

l

kji
kji

l

if

ifgg
; 

(117)

    
 


 

 ,,0.0
,,2/1,,2/1,,

'
kji

ll
kji

ll

kji
MINMAXsignalg

  
kji

ll
kji

lsignal
,,2/1,,2/1   ;                            (118) 

   
 


 

 ,,0.0
,2/1,,2/1,,,

'
kji

ll
kji

ll

kji
MINMAXsignalg

 
  

kji
ll

kji
lsignal

,2/1,,2/1,   ;                           (119)
 

   
 


 

 ,,0.0
2/1,,2/1,,,,

'
kji

ll
kji

ll

kji
MINMAXsignalg

 
  

2/1,,2/1,,  
kji

ll
kji

lsignal ;                            (120)
 

 lll 21   to steady state simulations.     (121) 
 

Finally, lsignal  = 1.0 if   0.0
,,2/1


 kji

l  and -1.0 

otherwise; lsignal  = 1.0 if   0.0
,2/1,


 kji

l  and      

-1.0 otherwise; lsignal  = 1.0 if   0.0
2/1,,


 kji

l  

and -1.0 otherwise. 
 This implicit formulation to the LHS of the TVD 
or UNO schemes of [12] and [25], respectively, is 
second order accurate in space and first order 
accurate in time due to the presence of the 
characteristic numerical speed  associated with the 
numerical flux function g’. In this case, the 
algorithms accuracy is definitely second order in 
space because both LHS and RHS are second order 
accurate. 
 
7.2 Implicit Scheme to the TVD/ENO 
algorithms of [21; 24] 

For these algorithms, a backward Euler method in 
time and approximate factorization ADI form can be 
employed. The factorization in each coordinate 
direction is presented below: 
 
  n

kjikjikjikjikjikji RHSQAAtAAtI ,,
*

,,,,2/1,,,,2/1,,
ˆˆ  




 ; 

(122) 
  *

,,
**

,,,2/1,,,,2/1,,,
ˆˆ

kjikjikjikjikjikji QQBBtBBtI  




 ; 

(123) 
  **

,,
1
,,2/1,,,,2/1,,,,

ˆˆ
kji

n
kjikjikjikjikji QQCCtCCtI  







 ; 

(124) 

                       1
,,,,

1
,,

  n
kji

n
kji

n
kji QQQ .           (125) 

 
 Equations (122-124) lead to standard block 
three-diagonal inversion procedure. The Thomas 
algorithm is employed to solve this system. 
 The matrices above are all defined along this 
manuscript, being unnecessary repeat them herein. 
 It is noted that each added high-order term of the 
right-hand-side operator [Eqs. (65; 81; 89)] is a 
function of the time step ti,j,k, and consequently the 
steady state solutions will depend on the time step. 
 It is important to emphasize that the RHS of the 
flux difference splitting implicit schemes present 
steady state solutions which depend of the time step.  
With this behavior, the use of large time steps can 
affect the stationary solutions, as mentioned in [40]. 
This is an initial study with implicit schemes and 
improvements in the numerical implementation of 
these algorithms with steady state solutions 
independent of the time step is a goal to be reached 
in future work of this author. 
 

8 Spatially Variable Time Step 

The basic idea of this procedure consists in keeping 
constant the CFL number in all calculation domain, 
allowing, hence, the use of appropriated time steps 
to each specific mesh region during the convergence 
process. According to the definition of the CFL 
number, it is possible to write: 

                    kjikjikji csCFLt ,,,,,,  ,            (126) 

 
where CFL is the “Courant-Friedrichs-Lewy” 
number to provide numerical stability to the scheme; 

  kjikji awvuc ,,

5.0222
,, 



   is the maximum 

characteristic speed of information propagation in 
the calculation domain; and   kjis ,,  is a 

characteristic length of information transport. On a 
finite volume context,   kjis ,,  is chosen as the 

minor value found between the minor barycenter 
distance, involving the (i,j,k) cell and a neighbor, 
and the minor cell side length. 
 

9 Initial and Boundary Conditions 
9.1  Initial Condition 
To the physical problems studied in this work, 
freestream flow values are adopted for all properties 
as initial condition, in the whole calculation domain 
([41-42]). Therefore, the vector of conserved 
variables is defined as: 
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(127) 
being  the flow attack angle. 
 
9.2  Boundary Conditions 

The boundary conditions are basically of three types: 
solid wall, entrance and exit. The far field condition 
is a case of entrance and exit frontiers. These 
conditions are implemented in special cells named 
ghost cells. 
 
(a) Wall condition: This condition imposes the flow 
tangency at the solid wall. This condition is satisfied 
considering the wall tangent velocity component of 
the ghost volume as equals to the respective velocity 
component of its real neighbor cell. At the same 
way, the wall normal velocity component of the 
ghost cell is equaled in value, but with opposite 
signal, to the respective velocity component of the 
real neighbor cell. According to [43], it results in: 
 

realzxrealyxrealxxg w)nn2(v)nn2(u)nn21(u  ; 

(128) 

realzyrealyyrealxyg w)nn2(v)nn21(u)nn2(v  ; 

(129) 

realzzrealyzrealxzg w)nn21(v)nn2(u)nn2(w  ,                        

(130) 

with “g” related with ghost cell and “r” related with 
real cell. To the viscous case, the boundary 
condition imposes that the ghost cell velocity 
components be equal to the real cell velocity 
components, with the negative signal: 

                                ;                     (131) 
                                ,                      (132) 
                                .                    (133) 

The pressure gradient normal to the wall is assumed 
be equal to zero, following an inviscid formulation 
and according to the boundary layer theory. The 
same hypothesis is applied to the temperature 
gradient normal to the wall, considering adiabatic 
wall. The ghost volume density and pressure are 
extrapolated from the respective values of the real 
neighbor volume (zero order extrapolation), with 
these two conditions. The total energy is obtained 
by the state equation of a perfect gas. 

 
(b) Entrance condition: 
(b.1) Subsonic flow: Four properties are specified 
and one is extrapolated, based on analysis of 

information propagation along characteristic 
directions in the calculation domain ([42]). In other 
words, four characteristic directions of information 
propagation point inward the computational domain 
and should be specified. Only the characteristic 
direction associated to the “(qn-a)” velocity cannot 
be specified and should be determined by interior 
information of the calculation domain. The pressure 
was the extrapolated variable from the real neighbor 
volume, to the studied problems. Density and 
velocity components had their values determined by 
the freestream flow properties. The total energy per 
unity fluid volume is determined by the state 
equation of a perfect gas. 
(b.2) Supersonic flow: All variables are fixed with 
their freestream flow values. 
 
(c) Exit condition: 
(c.1) Subsonic flow: Four characteristic directions 
of information propagation point outward the 
computational domain and should be extrapolated 
from interior information ([42]). The characteristic 
direction associated to the “(qn-a)” velocity should 
be specified because it penetrates the calculation 
domain. In this case, the ghost volume’s pressure is 
specified by its freestream value. Density and 
velocity components are extrapolated and the total 
energy is obtained by the state equation of a perfect 
gas. 
(c.2) Supersonic flow: All variables are extrapolated 
from the interior domain due to the fact that all five 
characteristic directions of information propagation 
of the Euler equations point outward the calculation 
domain and, with it, nothing can be fixed. 
 

10 Results 
Tests were performed in a personal computer 
(notebook) with Pentium dual core processor of 
2.20GHz of clock and 2.0Gbytes of RAM memory. 
Converged results occurred to 3 orders of reduction 
in the value of the maximum residual. The 
maximum residual is defined as the maximum value 
obtained from the discretized conservation 
equations. To all problems, the attack angle was 
adopted equal to 0.0. 
 The physical problems to be studied are the 
supersonic flows along a compression corner and 
along a ramp, in the inviscid case, and the 
supersonic flow also along a ramp, in the viscous 
case. 

10.1  Ramp Problem - Inviscid 

The ramp configuration is described in Fig. 1. The 
ramp inclination angle is 20o. An algebraic mesh of 
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61x60x10 points or composed of 31,860 
hexahedrons and 36,600 nodes was used as shown 
in Fig. 2. The points are equally spaced in both 
directions. 
 

 
Figure 1. Ramp configuration. 

 

 
Figure 2. Ramp mesh (61x60x10). 

 
 This problem consists in a low supersonic flow 
impinging a ramp, where an oblique shock wave 
and an expansion fan are generated. The freestream 
Mach number is equal to 2.0. The solutions are 
compared with the oblique shock wave theory and 
the Prandtl-Meyer expansion fan theory. 
 In the figures below is employed the following 
nomenclature to the algorithms: TVD2 (Total 
Variation Diminishing, second order accurate in 
space), ENO2 (Essentially Nonocillatory, second 
order accurate in space), TVD3 (Total Variation 
Diminishing, third order accurate in space), ENO3 
(Essencially Nonoscillatory, third order accurate in 
space) and UNO3 (Uniformly Nonoscillatory, third 
order accurate in space). 

 
10.1.1 Yee and Harten’s results 
Figure 3 shows the pressure contours generated by 
the [12] scheme. It is clear the pressure oscillation at 
the beginning of the ramp, which will originate a 
pressure peak in the wall pressure plot.  
 

 
Figure 3. Pressure contours ([12]-TVD2). 

 

 
Figure 4. Mach number contours ([12]-TVD2). 

 
 Figure 4 exhibits the Mach number contours 
generated by [12] algorithm. The solution presents 
some overshoots at the ramp beginning. The 
homogeneity of the contours is clear, which 
guarantees the same solution at each k plane. 
 Figure 5 presents the wall pressure distribution 
generated by the [12] scheme. As can see, a pressure 
peak is captured by the algorithm at the 
discontinuity, which represents an unphysical 
behavior. Even so, the shock is captured in four (4) 
cells, which is a good result. 
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Figure 5. Wall pressure distribution ([12]). 

 
10.1.2 Yang’s second order results 
Figures (6-7) show the pressure contours obtained 
by the TVD and ENO versions, respectively, of 
scheme [21]. It is possible to note that no overshoots 
or undershoots are presented. Moreover, the 
solutions in the k’s planes are equal and this aspect 
of the 3D flow is assured. Figures (8-9) exhibit the 
Mach number contours generated by the TVD and 
ENO versions of [21]. The solutions are clear, 
without oscillations. 
 

 
Figure 6. Pressure contours ([21]-TVD2). 

 
 Figure 10 presents the wall pressure distributions 
obtained by the [21] scheme. Both versions, TVD 
and ENO, capture the shock discontinuity in eight (8) 
cells, which is an excessive number of cells to a 
high resolution scheme capture a discontinuity. The 
excessive dissipation generated by the scheme, in its 
two versions, is responsible to this number of cells. 
 

 
Figure 7. Pressure contours ([21-ENO2). 

 

 
Figure 8. Mach number contours ([21]-TVD2). 

 

 
Figure 9. Mach number contours ([21]-ENO2). 
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Figure 10. Wall pressure distributions ([21]). 

 
10.1.3 Yang’s third order results 
Figures (11-12) present the pressure contours 
generated by the [24] scheme in its two versions, 
TVD and ENO, of third order spatial accuracy. 

 

 
Figure 11. Pressure contours ([24]-TVD3). 

 

 
Figure 12. Pressure contours ([24]-ENO3). 

 

Both solutions are clear, without oscillations. The 
2D solution at each k plane is obtained, assuring the 
3D behavior of reproducing such behavior. 
 Figures (13-14) show the Mach number contours 
generated by the [24] scheme in its two versions, 
TVD3 and ENO3. The shock is captured by both 
versions of scheme [24]. The smoothest solution is 
obtained by the ENO3 version of [24]. It is not 
observed overshoots or undershoots and the solution 
is clear and free of oscillations. The expansion fan 
region is also better detected by the ENO3 version 
of the [24] algorithm. 
 

 
Figure 13. Mach number contours ([24]-TVD3). 

 

 
Figure 14. Mach number contours ([24]-ENO3). 

 
 Figure 15 exhibits the wall pressure distributions 
generated by scheme [24], in its two versions. As 
can see, both solutions present small differences. 
The TVD3 solution is closer to the shock profile, 
but presents an oscillation at the ramp ending. The 
ENO3 solution did not present such oscillation and 
is the best choice to this scheme. Both solutions 
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capture the shock discontinuity using five (5) cells, 
which is far better than the [21] solutions (TVD and 
ENO).  

 
Figure 15. Wall pressure distributions ([24]). 

 
10.1.4 Yang and Hsu’s third order results 
 

 
Figure 16. Pressure contours ([25]). 

 

 
Figure 17. Mach number contours ([25]). 

 Figure 16 exhibits the pressure contours obtained 
by the [25] scheme. A clear solution is obtained 
with [25] algorithm. No oscillations are observed in 
this figure. Figure 17 shows the Mach number 
contours obtained by [25] scheme. A clear solution 
is also generated in terms of Mach number contours. 
 Figure 18 presents the wall pressure distribution 
generated by the [25] scheme. A better behavior in 
comparison with the other schemes is obtained by 
the [25] UNO3 scheme. The discontinuity is 
captured using four (4) cells. 

 
Figure 18. Wall pressure distribution ([25]). 

 
 By inspection with the other pressure 
distributions, it is evident that this wall pressure 
distribution generated by the [25] scheme is the best. 
 One way to quantitatively verify if the solutions 
generated by each scheme are satisfactory consists 
in determining the shock angle of the oblique shock 
wave, , measured in relation to the initial direction 
of the flow field. [44] (pages 352 and 353) presents 
a diagram with values of the shock angle, , to 
oblique shock waves. The value of this angle is 
determined as function of the freestream Mach 
number and of the deflection angle of the flow after 
the shock wave, . 
 

Table 1. Shock angle and percentage errors. 
 

Algotithm  () Error (%) 
[12] – TVD2 53.0 0.00 
[21] – TVD2 54.0 1.89 
[21] – ENO2 53.0 0.00 
[24] – TVD3 53.8 1.51 
[24] – ENO3 53.0 0.00 
[25] – UNO3 53.0 0.00 

 
To the ramp problem,  = 20º (ramp inclination 
angle) and the freestream Mach number is 2.0, 
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resulting from this diagram a value to  equals to 
53.0º. Using a transfer in the pressure contours 
figures, at the xy plane, it is possible to obtain the 
values of  to each scheme, as well the respective 
errors, shown in Tab. 1. As can be observed, the [12] 
TVD2, the [21] ENO2, [24] ENO3 and [25] UNO3 
algorithm has yielded the best results. Errors less 
than 2.0% were observed in all solutions. 
 
10.2  Compression Corner Problem - Inviscid 

The compression corner configuration is described 
in Fig. 19. The corner inclination angle is 10o. An 
algebraic mesh of 70x50x10 points or composed of 
30,429 hexahedral cells and 35,000 nodes was used 
and is shown in Fig. 20. The points are equally 
spaced in both directions. 

 
Figure 19. Compression corner configuration. 

 
 This problem consists in a moderate supersonic 
flow impinging a compression corner, where an 
oblique shock wave is generated. The freestream 
Mach number is equal to 3.0. The solutions are 
compared with the oblique shock wave theory 
results. 

 
Figure 20. Compression corner mesh (70x50x10). 

 
10.2.1 Yee and Harten’s results 

Figure 21 exhibits the pressure contours obtained by 
the [12] TVD2 scheme. As can be seen, a pressure 
peak appears at the corner beginning and it is 
reflected in the value 1.48 of the pressure legend, 

higher than the other solutions. Due to this behavior 
in the pressure contours, the wall pressure 
distribution of [12] presents this peak. 
 

 
Figure 21. Pressure contours ([12]-TVD2). 

 

 
Figure 22. Mach number contours ([12]-TVD2). 

 
Figure 23. Wall pressure distribution ([12]). 

 Figure 22 presents the Mach number field 
generated by the [12] scheme. Good homogeneity 
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properties are observed. Non oscillations are 
observed in this solution. 
 Figure 23 shows the wall pressure distribution 
generated by the [12] TVD2 scheme. This solution 
presents a pressure peak at the discontinuity which 
damages its quality. Even so, the shock wave is 
captured with four (4) cells, which is a good result 
for a high resolution scheme. 

 
10.2.2 Yang’s second order results 

Figures (24-25) show the pressure contours obtained 
by the [21] scheme, in its TVD and ENO second 
order accurate versions. Both solutions are free of 
oscillations, presenting a good transition between 
smooth and discontinuity regions. 
 

 
Figure 24. Pressure contours ([21]-TVD2). 

 

 
Figure 25. Pressure contours ([21]-ENO2). 

 
 In Figures (26-27) are exhibit the Mach number 
contours obtained by the [21] algorithm in its TVD2 
and ENO2 versions. As can be seen, no oscillations 
are present in the solutions. The Mach number 

homogeneity properties are well assured by the 
solution algorithm. 

 
Figure 26. Mach number contours ([21]-TVD2). 

 

 
Figure 27. Mach number contours ([21]-ENO2). 

 
Figure 28. Wall pressure distributions ([21]). 

 
 Figure 28 shows the wall pressure distributions 
obtained by the two versions of the [21] algorithm. 
They are compared with the oblique shock wave 
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theory results. As can be seen, the [21] algorithms in 
its ENO2 version presents slightly better behavior 
than the TVD2 version. The pressure plateau is well 
characterized by both algorithms. The shock 
discontinuity is captured using five (5) cells, which 
is prejudicial in the solution quality and bad for a 
high resolution scheme. Typical number of cells is 
at maximum four (4). 
 
10.2.3 Yang’s third order results 

Figures (29-30) exhibit the pressure contours 
obtained from [24], in its TVD and ENO versions of 
third-order accuracy, respectively. The solutions are 
free of oscillations and present good capture of 
shock discontinuity. The TVD3 version of the [24] 
algorithm presents the smallest shock wave 
thickness. 

 
Figure 29. Pressure contours ([24]-TVD3). 

 
Figure 30. Pressure contours ([24]-ENO3). 

 
 Figures (31-32) show the Mach number contours 
obtained by [24] in its TVD3 and ENO3 versions. 
As can be seen, no oscillations are presented. 
Moreover, the homogeneity properties are obtained 

and the Mach number peak accords to the 
freestream Mach number. 

 
Figure 31. Mach number contours ([24]-TVD3). 

 

 
Figure 32. Mach number contours ([24]-ENO3). 

 
Figure 33. Wall pressure distributions ([24]). 

 
 Figure 33 presents the wall pressure distributions 
obtained by the two versions of the [24] algorithm. 
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As can see, both solutions are very close. However, 
it is possible to distinguish that the ENO3 solution is 
closer to the theory profile at the shock region and 
that it allows a smoother transition in the shock 
region, presenting no overshoots and undershoots. 
The shock profile is captured using four (4) cells. 
 
10.2.4 Yang and Hsu’s third order results 

Figure 34 exhibits the pressure contours resulting 
from the [25] UNO3 scheme. As can be seen, no 
oscillations and good capture of the shock 
discontinuity are observed. 

 
Figure 34. Pressure contours ([25]-UNO3). 

 
 Figure 35 presents the Mach number contours 
generated by the [25] UNO3 algorithm. This scheme 
captures the shock discontinuity appropriately, 
without overshoots and undershoots. The freestream 
Mach number is preserved and the homogeneity 
properties are conserved. 
 

 
Figure 35. Mach number contours ([25]-UNO3). 

 

 Figure 36 shows the wall pressure distribution 
obtained by the [25] UNO3 scheme. The pressure 
discontinuity is captured using four (4) cells, which 
is a good result to a high resolution scheme. The 
shock profile is also close to the theoretical solution. 

 
Figure 36. Wall pressure distributions ([25]). 

 
 Figure 37 shows the wall pressure distributions 
obtained by all schemes. They are compared with 
the oblique shock wave theory results. The best 
solution is that obtained with the [25] UNO3 
scheme. 

 
Figure 37. Wall pressure distributions (Global). 

 
 The value of the shock angle of the oblique 
shock wave at the compression corner is determined 
as function of the freestream Mach number and of 
the deflection angle of the flow after the shock wave, 
. To the compression corner problem,  = 10 
(ramp inclination angle) and the freestream Mach 
number is 3.0, resulting from this diagram a value to 
 equals to 27.5. Using a transfer in the pressure 
contours figures, at the xy plane, it is possible to 
obtain the values of  to each scheme, as well the 
respective errors, shown in Tab. 2. As can be 
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observed, the [25] UNO3 algorithm has yielded the 
best results. Errors less than 5.50% were observed in 
all solutions. 
 

Table 2. Shock angle and percentage errors. 
 

Algotithm  () Error (%) 
[12] – TVD2 27.0 1.82 
[21] – TVD2 26.0 5.45 
[21] – ENO2 27.0 1.82 
[24] – TVD3 27.0 1.82 
[24] – ENO3 27.0 1.82 
[25] – UNO3 27.4 0.36 

 
10.3 Ramp Problem – Viscous 
The ramp configuration is described in Fig. 1. The 
ramp inclination angle is 20o. An algebraic mesh of 
61x60x10 points or composed of 31,860 
hexahedrons and 36,600 nodes was used as shown 
in Fig. 38. An exponential stretching was used in the 
 direction to capture viscous effects. 

 
Figure 38. Ramp mesh (61x60x10). 

 
 This problem consists in a low supersonic flow 
impinging a ramp, where an oblique shock wave 
and an expansion fan are generated. Viscous effects 
are captured by the present Navier-Stokes 
formulation. The freestream Mach number is equal 
to 2.0. The solutions are compared with the oblique 
shock wave theory and the Prandtl-Meyer expansion 
fan theory, which are valid to comparison based on 
the boundary layer theory.  
 
10.3.1 Yee and Harten’s results 

Figure 39 shows the pressure contours obtained by 
the [12] TVD2 scheme. As can be seen, the increase 
of the boundary layer thickness close to the ramp 
beginning originates a detachment of this layer, 

generating a separation and the formation of a 
circulation bubble at the corner. A weak shock wave 
ahead of the corner beginning is formed, which 
interacts with the expected oblique shock at the 
ramp. 
 

 
Figure 39. Pressure contours ([12]-TVD2). 

 

 
Figure 40. Mach number contours ([12]-TVD2). 

 
Figure 41. Circulation bubble formation ([12]-TVD2). 
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 Figure 40 exhibits the Mach number contours 
generated by the [12] TVD2 scheme. As can be seen, 
a region of circulation is formed close to the corner 
wall. 
 Figure 41 presents the circulation bubble formed 
at the corner wall. It is possible to see the boundary 
layer detachment and reattachment. 
 Figure 42 shows the wall pressure distribution 
generated by the [12] TVD2 scheme. It presents the 
region of separation by a minor pressure peak ahead 
of the ramp. The shock at the ramp is well captured 
by the scheme. It is represented by the second 
pressure peak, which appears at the ramp region. 
The smooth characteristic of this shock is due to 
viscous effects. 

 
Figure 42. Wall pressure distribution ([12]). 

 
10.3.2 Yang’s second order results 
Figures (43-44) show the pressure contours obtained 
by the [21] scheme, in its TVD and ENO second 
order accurate versions. As can see, the non-
homogeneity in both solutions characterizes the 
loose of three-dimensional properties.  

 
Figure 43. Pressure contours ([21]-TVD2). 

 
Figure 44. Pressure contours ([21]-ENO2). 

 

 
Figure 45. Mach number contours ([21]-TVD2). 

 

 
Figure 46. Mach number contours ([21]-ENO2). 

 
It is important to emphasize here that the [21] 
scheme, as also [24-25] were designed to yield good 
solutions to hyperbolic equations like the Euler 

WSEAS TRANSACTIONS on FLUID MECHANICS Edisson Sávio De Góes Maciel

E-ISSN: 2224-347X 124 Issue 3, Volume 8, July 2013



 

 

equations. In the viscous case, the loose of quality in 
the solutions is due to a non-appropriate capture of 
the viscous effects. 
 Figures (45-46) exhibit the Mach number 
contours obtained by the [21] scheme in its TVD 
and ENO versions, respectively. The region of 
separation is well characterized in both solutions. 
Figures (47-48) presents the circulation bubble 
formation close to the corner wall. Both schemes 
capture appropriately the circulation bubble. 

 
Figure 47. Circulation bubble formation ([21]-TVD2). 

 
Figure 48. Circulation bubble formation ([21]-ENO2). 

 
 Figure 49 shows the wall pressure distributions 
generated by the [21] scheme in its two versions: 
TVD2 and ENO2. They are compared with the 
oblique shock wave results and the Prandtl and 
Meyer expansion wave results. Both versions of [21] 
capture the weak and the strong shock waves at the 
ramp beginning and at the ramp. The ENO2 solution 
predicts a more severe strong shock wave than the 
TVD2 solution. It characterizes the ENO2 version 
of [21] as presenting a more conservative solution 
than the TVD2 version. 

 
Figure 49. Wall pressure distributions ([21]). 

 
10.3.3 Yang’s third order results 
Figure (50-51) exhibit the pressure contours 
obtained by [24] in its TVD3 and ENO3 versions. 
 

 
Figure 50. Pressure contours ([24]-TVD3). 

 
Figure 51. Pressure contours ([24]-ENO3). 
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As can be noted, pressure contours are not 
homogeneous solutions. The most severe pressure 
field is due to [24] in its ENO3 version. 
 

 
Figure 52. Mach number contours ([24]-TVD3). 

 

 
Figure 53. Mach number contours ([24]-ENO3). 

 
Figure 54. Circulation bubble formation ([24]-TVD3). 

 

 Figures (52-53) present the Mach number 
contours generated by the [24] scheme in its TVD3 
and ENO3 versions. The circulation bubble is well 
captured by both versions. The boundary layer 
detachment and reattachment region is larger in the 
TVD3 solution. 
 Figures (54-55) show the circulation bubble 
formation at the separation region captured by [24] 
scheme in its TVD3 and ENO3 versions. As said 
before, the separation region generated by the [24]-
TVD3 scheme is larger than that obtained with [24]-
ENO3 scheme. Both versions of the [24] scheme 
capture the circulation bubble. 

 
Figure 55. Circulation bubble formation ([24]-ENO3). 

 
 Figure 56 exhibits the wall pressure distributions 
generated by the [24] scheme in its TVD3 and 
ENO3 variants. They are compared with the oblique 
shock wave results and the Prandtl and Meyer 
expansion wave results. Both versions of [24] 
capture the weak and the strong shock waves at the 
ramp beginning and at the ramp. Both profiles 
predict approximately the same pressure peak at the 
ramp region. 

 
Figure 56. Wall pressure distributions ([24]). 
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As can be seen, the separation region in the TVD3 
version of [24] scheme, before the ramp, is more 
extent than the respective one of the ENO3 version 
of [24], as noted before. 
 
10.3.4 Yang and Hsu’s second order results 

Figures 57 shows the pressure contours obtained by 
the [25] scheme. The contours present good 
homogeneity properties. The shock is well captured. 
Figure 58 exhibits the Mach number contours 
obtained by the [25] scheme. The circulation bubble 
is well characterized in the Mach number contours. 
Figure 59 highlights the circulation bubble 
formation, in terms of streamlines, in the Mach 
number contours. 
 

 
Figure 57. Pressure contours ([25]). 

 

 
Figure 58. Mach number contours ([25]). 

 
 Figure 60 presents the wall pressure distribution 
obtained by the [25] scheme. It is compared with the 
oblique shock wave results and the Prandtl and 
Meyer expansion wave results. The boundary layer 

separation is well detected in this figure, represented 
by the first pressure peak, weaker than the ramp 
pressure peak. The pressure distribution presents a 
pressure peak close to the inviscid result, which is 
the correct solution considering the boundary layer 
theory. 

 
Figure 59. Circulation bubble formation ([25]). 

 
Figure 60. Wall pressure distribution ([25]). 

 
10.4 Conclusion of this work 

Concluding this analyze, the best algorithm was the 
[25] UNO3 scheme, presenting good pressure 
distributions in the ramp and compression corner 
problems, in the inviscid case. Moreover, this 
scheme also presented the best value to the shock 
angle of the oblique shock wave in the ramp 
problem, with 0.00% of error, and in the 
compression corner problem, with 0.36% of error. 
In the ramp viscous problem, good solutions are 
obtained with [25] algorithm, appropriating 
capturing the shock wave and the circulation bubble 
formation, close to the corner. Hence, this algorithm 
is the selected one to describe the two physical 

WSEAS TRANSACTIONS on FLUID MECHANICS Edisson Sávio De Góes Maciel

E-ISSN: 2224-347X 127 Issue 3, Volume 8, July 2013



 

 

problems studied herein, as comparing these six (6) 
numerical schemes. 
 
10.5 Conclusion of this study 

Comparing the results obtained in this work with 
those obtained in the first part of this study, it is 
possible to conclude that the [25] UNO3 algorithm 
is the best as involving all thirteen (13) schemes 
studied in Part I and the six (6) schemes studied 
herein. The smooth pressure distributions at the 
ramp and compression corner problems, in the 
inviscid case, rendered the distinction of best 
algorithm to the UNO3 one. In the viscous problem, 
although the first algorithms of Part I of this study 
have reached convergence with the convergent-
divergent nozzle problem and the present ones did 
not, the latters are good described by the ramp 
problem. In the viscous ramp problem, both [12] 
and [25] schemes present good behavior, with a 
little better description by the [25] scheme. So, the 
better choice for these problems (ramp and 
compression corner inviscid problems and ramp and 
convergent-divergent nozzle viscous problems) is 
due to the [25] algorithm. 
 

11 Conclusion 
In the present work, second part of this study, the 
[12] TVD, the [21] TVD/ENO, the [24] TVD/ENO, 
and the [25] UNO schemes are implemented, on a 
finite volume context and using a structured spatial 
discretization, to solve the Euler and Navier-Stokes 
equations in the three-dimensional space. All 
schemes are high resolution flux difference splitting 
ones, based on the concept of Harten’s modified 
flux function. The [12] is a TVD second order 
accurate in space and first order accurate in time 
algorithm. [21] is a TVD/ENO second order 
accurate in space and first order accurate in time 
algorithm. The [24] is a TVD/ENO third order 
accurate in space and first order accurate in time 
algorithm. Finally, the [25] is a UNO third order 
accurate in space and first order accurate in time 
algorithm. An implicit formulation is employed to 
solve the Euler equations. A Linearized 
Nonconservative Implicit LNI form or an 
approximate factorization ADI method is employed 
by the schemes. The algorithms are accelerated to 
the steady state solution using a spatially variable 
time step, which has demonstrated effective gains in 
terms of convergence rate ([32-33]). All schemes 
are applied to the solution of physical problems of 
the supersonic flows along a ramp and along a 
compression corner, in the inviscid case. The results 
have demonstrated that the [25] UNO algorithm, 

third order accurate in space, has presented the best 
solutions, in the two works of this study. 
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